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The author examines a system through which passes a flux of a cer tain extensive quantity created by two 
constant sources. The properties and the character is t ic  steady state of this system are studied, as well  as 
the process of transition to the steady state. 

In the study of steady irreversible processes it  is of interest to establish which properties of the steady state essen- 
t i a l ly  distinguish it from the unsteady state, From a thermodynamic  point of view it is important  to ascertain the prop- 
erties on which a phenomenological  theory may  be based. In this regard the principle of min imum rate of entropy pro- 
duction, based on Prigogine's theorem [1], is of definite value. The min imum principle is appl icable  to the case of  

superposition of several  processes, and when certain boundary conditions are fulfilled, it is a necessary cri ter ion of the 

steady state. 

In fact, a necessary and sufficient cr i ter ion of the steady state is that heterogeneous fluxes J1 and J2 flowing along 
the axis 0X should be constant with respect to the coordinates,  i . e . ,  J1(x) = const t and J2(x) = const 2. I f  the boundary 

conditions mainta in  flux J1, but do not mainta in  flux Jz, a steady state is established corresponding to I2 = 0 and Ix = 
= const * 0. The min imum principle  relates precisely to this case, Here i t  can be shown [2] that condit ion I2 = 0 is 
equivalent  to the condition of min imum rate of entropy production. However, this condit ion is formulated for c i rcum- 

stances from which it does not at al l  fotlow that the condit ion J1 (x) = const, is fulfilled. Thus, the min imum principle  
does not exhaust all  the character is t ic  properties of the steady state, and the search for new principles is important  

from both the  theore t ica l  and the prac t ica l  viewpoint, 

In the present paper a system in the steady state is examined,  in the simplest  case when the flux, directed along 
the axis 0X, may be represented by the equation* 

Oh' (1) 
d ( x , t )  = - -  k ( x , g ( x ,  t ) )  Ox " 

where the plus sign obtains i f  d T  
dx 

The direct dependence of k on x takes account of the possibili ty of heterogenei ty  of the system. 

If constant boundary conditions are maintained,  a steady state is established, in which the flux at al l  sections of 
the system has the same value and direction. We shall take this direct ion as positive, and the opposite direct ion as neg- 

ative, Hence, examining an unsteady state with the same boundary conditions at any instant of t ime,  we shali assign 
a different algebraic value to the flux at different sections. At some section or other, the a lgebraic  value of the flux 

proves to be a min imum Jmin. The flux J at any section x may be represented by the sum 

,Jr (x, t) = Jrnin (t) @ Jex  (x, t), J e x  > / 0 .  (2) 

If  Jmin > 0, the system in this state becomes conducting, and the value Imi  n acquires a s imple physical  meaning.  It is 
the portion of the to ta l  flux J passing through al l  sections of the system. In t ime  dt the flux J creates in the conducting 

system t h e  changes that would be caused by a flux Jex(cess) = J - Jmin. In this sense Jmin character izes  the rapid trans- 
mission of a cer ta in  extensive quantity through the whole system without change of the properties of the conducting sys- 

tem itself, We shall ca l l  Jmin the through flux Jthr. Clearly,  in the steady state, Jthrost = Ist, 

For convenience,  we shall now consider the specific case of one-dimensional  heat  conduction along the axis 0X. 

We shall assume that constant temperatures T 1 and T 2 are main ta ined  at the ends of the conducting system by means of 
thermal  reservoirs. Let the system be inhomogeneous, and the thermal  conduct ivi ty be k = f ( x ,  T), Then, for the heat  

flux J at a fixed instant of t ime,  according to (1) and to our condit ion regarding choice of sign, we obtain 

f (x, dr  d ( x ) =  • T) -~x ' 

coincides with the direct ion of  the gradient in the steady state, and the minus sign i f  

the directions in question are opposite. 

* The more general  case when there are several  heterogeneous fluxes in the system, and interact ion between them, 

will  be examined in another ar t ic le ,  
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We shall now show that the system examined attains its greatest rate of heat transmission from the hot source to 
t h e  cold region in the steady state, i . e . ,  the through flux in the steady state is a maximum.  

Let the temperature distribution in the steady state be given by the function Tst = Y (x). The difference in the 
temperature distribution for some unsteady state is given by the function z (x) = T (x) ~ Y (x). Y (x) and Z (x) are defined 
in  the interval a -< x -< b. Y(x) has a finite derivative in is, b], such that ] Y'(x) ] < C. z(x) has a continuous first de- 
rivative z '  (x) in is, b], and, with the possible exception of a finite number of points, a finite second derivative z" (x). 
Here z" (x) changes sign in is, b], and, with the possible exception of a finite number of points, a finite second deriva- 
t ive z" (x). Here z" (x) changes sign in is, b] a finite number of times. 

The boundary conditions are expressed in the form z (a) = z (b) = 0, .r z (x) ~ 0), and let Y (a) < Y (b). 

The thermal  conductivity is given by the function f(x, T) > 0. f(x, Y) is bounded below, such that E > f(x, Y). 
Moreover, the derivative f'T (x, T) exists, and is also finite, i . e . ,  If 'T (x, T)[ > B; B, C, E are certain finite positive 
numbers. 

We shall show that in the interval [a, b] there exists a g for which 

[ [ ( ,  Y ( ( ) I  Y'(<) > f [ ( ,  r (() + z G ) ]  [ Y ' G )  + z' (()) (8) 

is satisfied, with the assumptions we have made,  the following may be proved. In the interval [a, b] there exists a point 
for which z (~) = O. In some region near the point g to the left or the right ( y l . ~ . v ~  or ~ x G  y~) z '  (x) < O. For any 

two values x 1 and x 2 belonging to this region and satisfying the condition ] ~ - -  x ! ] < [ ~ - -  x~ ], we have 

e' (X1) 
A, 

z _ _ ,  ,(x~---71 

w h e r e  A is a finite positive number. 

We set 

Let us write A in the form 

A = If (x, 

Later on we shall examine this region near the point g. 

a - - [ ( x ,  Y q- z) d (Y + z) f (x, Y) dY 
dx dx 

Af  = f(x, v + z) - - f ( x ,  Y). 

[~X ~-x ] dY dz Y) 4-Afl dY + de --[(x, Y) -~x = [(x' Y ) ~ 4 -  
_ dx 

dY + a f  + a f  
dx 

According to the mean value theorem 

I o - Y l + l Q - Y - ~ l = l z l ,  

-aT =t(*' Y)-a7 1+-77-+ tz J 
(4) 

A f  = ac)(x, Q (x)) z, where Q is some number satisfying the condition 

A f  lira fT(x' ?(x))z = - .~  l i m B  . .~lim - 7 -  . .~  z " ~ 

We once again make use of  the mean value theorem 

Z(X) = Z (~) + Z' (0) ( X - -  ~) = Z '  (0)(X-7- ~), 

where 0 satisfies I 0 - -  ~[ + ] 0 - -  x] = I ~ - -  x 1, and, therefore, 

I ~ - 0 1 < l ~ - x l ,  

] z ]  12 z'(O)(x--~) ].<.Blim I Blimx.~ - - z  = B  ~.m z'(x) " x-~ 

H e n c e  

A l s o ,  

lira [ A [z' 
~~ J z7 (x, Y) 

l i m ]  A / -  = 0 .  
x-~ Z' 

- -  ~ l i m  ~ l i ra  

l i m ] .  A f Y ' ( x ) [  .liml ArC 

A (x- -  ~)[ = O. 

z, / 
[(x, Y),  = O.:const ~ 0," 

C l i m l ~ 5 ~ l = 0 .  
E x ~.~, 
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Thus. the last two terms fn tile square brackets of (4) are infinitely small values whe~ax ~ ~, Therefore, forsr~me ~, 

sufficiently close to ~, the whole square bracket is positive. But, since f(~, Y (~)) > 0 and z' (~) < 0, when x -- CA < 0. 
and (8) is satisfied. Because o f the  boundary conditions that we assumed, Y'(.~) > 0, and therefore, the left part of (3) 
is Jst (~), and the right side is J (4). According to (2), 

,[ (,2_) = ,l.~,~ q- ' lex ('~)' Jex  (:'-") :"  0. 

Acc'ordingto what has been proved. Jst (g) > J(4)" Therefore, 

' l thr st > d t h r .  

"lYe shall now evaluate the validity of the assumptions made in formuIating the theorem. The assumption of the 

existence of the derivatives and their finiteness is quite reasonable from the physical point of view. The matter of 

f(x, Y (x)) having a lower bound may be regarded as a consequence of the continuity of ](x, Y (x)) in the  interval [a, b], 
which is always permissible physically. 

The exclusion from consideration of curves for which the second derivative z" (x) in the interval [a, b] changes sign 

an infinite number of times goes beyond the usual framework of constraints. However, such a case can scarecely be 

represented physically. This would imply that in a region as small as we please in the vicinity of some point z" (x) 
changes sign an infinite number of t ime. We need thus concern ourselves here too only with the l imitat ion of mathemat-  
ical generality. 

An actual physical l imitat ion on our arguments can be set only by applicability of the basic equation (1). Accord- 

ing to the above, this equation is applicable to the simplest cases: heat conduction in a solid rod, one-component  iso- 

thermal diffusion, isothermal electric conduction, etc. This does not imply, however, that our relation (5) breaks down 

in cases when (1) is inapplicable. In these cases similar results may be obtained from quite different consideration. 

For example, consider successive chemical  reactions. This is the very case examined by Prigogine to illustrate the 

principle of min imum entropy production [3]. We have here a chain of successive transformations occurring under iso- 

baric and isothermal conditions: 

M z ~ M ~ N -~  O -~ P - , .  F . ~  F I , ( 6) 

where letters without subscripts correspond to the various components in the reactor, and the subscript / refers to com- 

ponents in the external medium. The over-al l  result of this interesting process is expressed briefly as M l -+ F 1 , and its 

rate is determined by the rate in the slowest link in the chain (6), i . e . ,  by the through flux Jthr. If a steady state is 

attained, the rate of the processes in all the elements will be equal to Jst = Jthr 's t .  We shall show that relation (8) is 
valid here also, 

Let us assign boundary conditions in the form of constant concentrations 

tzMz = consf and zzFz = const. 

It should be noted that if the concentration of any component of (6) is increased, other things being equal, the rate of 

the process designated by the arrow to the right of this component increases, while the rate on the left decreases, To 

avoid decrease of the rate on the left, it is necessary to increase the concentration of all components to the left of the 

one chosen in (6). This is impossible, however, since nM/=  const. 

If the concentration of any component is decreased, a decrease follows in the rate of the process to the right. It 

is not possible to restore the rates in all elements because of the condition nFl = const. Therefore, if we go from the 

steady state to an unsteady state, the rate in some element decreases. For this d e m e n t  we have 

dthr. st ~- dst > d = Jmin if- Yex >/dmi~,  i. e, dthr st > dthr " 

Finally, we shall explain how the through flux varies with t ime in the case of heat conduction that we have just 
examined. The total flux must now be represented as a function of the coordinates and time, i . e . ,  

J : J (x ,  t) .  

Let c = c (x, T) be the heat capacity per unit length of the system. Considering the element  dx of the conducting 

system, and assuming the existence of the appropriate derivatives, we obtain the relation 

OT 1 0 J  
, ( 7 )  

Ot c Ox 

which is valid for all values of x and t, Moreover, 
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According to Eq. (1), 

c g Z T  l cged O d O ( @ )  

OtOx c Ox 2 Ox Ox " (8) 

Od O2T OT Ok OT 
- -  k 

Ot OxOt Ox OT Ot 
(9) 

From (9), (8), and (7) we obtain 

OJ k O~J OJ 0 / l \  1 0 J  Ole OT 
Ot -- C OX 2 + h ~_ZC_) _~_ (10) Ox Ox c Ox OT Ot 

We shall examine (10) at any time for the section at which the flux at that t ime is least. If this section lies within the 

OJ OZ d 
interval c = c (x, T), the usual conditions for a minimum must be satisfied: - -  ~ 0 and ~ O. If the section in 

Ox Ox ~ 

question coincides with a boundary of the interval [a, b], we must turn our attention to the boundary conditions. Togeth- 

er with (7), they g i v e -  . (  0~xd )x=a = 0 ,  ( O__~v )x= b 0 J  = 0 .  Therefore the condition for attainment of the least v a h e  is 

expressed uniquely in all cases by 

OJ O2d 
Ox -- O, Ox 2 >~ O. (11) 

Od 
From (10), taking accohnt of (11), we obtain - -  ~ O. 

Ot 

The last relation indicates that if at a given instant of t ime the least value of flux exists at section x, then at 
section x at that instant of t ime the flux does not decrease. This result, together with (5), leads to the conclusion that 
in transition to the steady state, the through flux varies, and varies only in an inc.reasing direction. This expresses the 
tendency Of the system to maximize its conductivity. The steady state corresponds to maximum conductivity. 

Notation 

t - t i m e ;  x-coordinate; J - f lux  of some extensive quantity; 8y/Ox-gradient of ~he corresponding intensive quantity; 
k -  conductivity. 
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